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SUMMARY

A design is proposed for case-control studies in which selection of subjects for full variable ascertain-
ment is based jointly on disease status and on easily obtained “screening” variables that may be
related to the disease. Recruitment of subjects follows an independent Bernoulli sampling scheme,
with recruitment probabilities set by the investigator in advance. In particular, the sampling can be
set up to achieve, on average, frequency matching, provided prior estimates of the disease rates or
odds ratios associated with screening variables such as age and sex are available. Alternatively—for
example, when studying a rare exposure—one can enrich the sample with certain categories of subject.
Following such a design, there are two valid approaches to logistic regression analysis, both of which
aliow for efficient estimation of effects associated with the screening variables that were allowed to
bias the recruitment. The statistical properties of the estimators are compared, both for large samples,
based on asymptotics, and for small samples, based on simulations.

1. Intreduction

Matching strategies are often employed to improve efficiency in case~control studies. For
example, controls can be chosen to have the same empirical distribution as cases for some
easily obtained variables known to be related to disease risk, such as age and sex. This
technique, known as “frequency” or “quota” matching, imposes balance but introduces
both practical and statistical complications. If recruitment is ongoing, with cases recruited
as they are diagnosed, there is no way to know how many controls ina particular stratum
(defined by the matching factors) will ultimatelv be required. Thus there are unavoidable
recruttment inefficiencies. In the analysis, the investigator must incorporate the matching
factors into the risk model (Gail, 1988), but must remember that the resulting point
estimates for effects associated with those factors are meaningless (Kleinbaum, Kupper,
and Morgenstern, 1982, p. 382). Furthermore, since the main effects for matching variables
cannot be estimated, additive models for interactions involving those variables cannot be
assessed. Recently Thomas and Greenland (1985) have summarized these problems, noting
that “any potential gain in statistical efficiency derived from matching must . . . be weighed
against several disadvantages: (a) afier matching. the main effect of a variable cannot be
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tested or estimated; (b) matching precludes fitting nonmultiplicative models; (c) each
additional matching factor can add cost and complexity to the sampling scheme and
increase the risk of being unable to find a match.”

This paper proposes a design strategy which, when there is some prior information about
the risk associated with the matching factors, can solve the first two of these problems and
greatly alleviate the third. In the proposed method, each potential subject identified is
invited to participate or not according to a Bernoulli random mechanism, with probabilities
set by the investigator. The recruitment probabilities can depend jointly on disease status
and on any easily ascertained screening variables. such as sex and age. Controls are recruited
independently of one another and of cases, without anv quota requirements imposed by
already recruited study subjects. This design is particularly advantageous in a situation
where the exposure of interest is expensive to measure and the screening variables are
known risk factors that are relatively cheap to ascertain.

Following such a design, there are two valid choices for analysis. One can condition on
the numbers of screened and recruited individuals and carry out a conditional maximum
pseudo-likelihood analysis, resembling that proposed by Bresiow and Cain (1988) for “two-
stage” sampling. Alternatively, individuals who were screened but not recruited can be
ignored, so that the stochastic recruitment process is absorbed into the aggregate of random
processes giving rise to the sample. With incorporation of proper “offsets,” based on the
recruitment probabilities, logistic regression analysis by maximum likelihood [e.g., by
GLIM (Baker and Nelder, 1978}] goes through without modification, and all coefficients
and variances can be consistently estimated, including those associated with factors that
were allowed to bias the recruitment. Exploratory analyses then proceed with great flexi-
bility, because likelihood ratio testing is valid for model comparisons.

Section 2 considers, as an example, the problem of studying household exposure to radon
as an etiologic factor in lung cancer, where current smoking status is an important screening
variable. A method is developed and illustrated for computing recruitment probabilities
needed 1o achieve a specified distribution of screening variables, when the case and
population distributions are approximately known. Section 3 sets out the notation for
randomized recruitment in the context of a logistic model, and describes the incorporation
of the fixed and known correction parameters, for both unconditional and conditional
maximum likelihood analysis. A generalization to other risk models is also provided.
Section 4 adapts the method of Breslow and Cain to this setting and gives asymptotic
relative efficiencies for the log odds ratio for two factors following stochastic frequency
matching, for selected combinations of parameters. Section 5 compares the maximum
partial likelihood approach to the conditional approach adapted from Breslow and Cain,
describing the results of a small simulation study. Section 6 discusses advantages and
disadvantages of randomized recruitment, and offers guidelines for choice of analysis.

2. The Design, and an Example

Consider, as a particular example, the problem of studying household exposure to radon
gas and its possible etiologic link to lung cancer. Estimates of the number of deaths in the
United States per vear due to environmental radon exposure vary from about 9,000 to
25,000 (Cohen, 1987). These estimates of its public health impact are imprecise, based as
they are on data from miner cohorts extrapolated down to the relatively low levels
experienced in the typical home. Extensive direct epidemiologic evidence related to effects
of low-level radon exposure does not yet exist, but studies are in progress or in planning
stages. The focus of such a study might be to estimate effects of radon and also 10 assess
the joint effects of radon exposure and cigarette smoking.
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There 15 a fundamental problem in trying to identify etiologic factors for fung cancer:
because most lung cancer is caused by smoking, a random series of cases is likely to include
only a small proportion of nonsmokers, perhaps 15%, while a random sample of controls
(in the same age group) may include about 70% nonsmokers. Stratification on smoking
status is clearly required, but will result in gross imbalance: cases will be plentiful in the
smokers’ stratum but scarce in the nonsmokers’ stratum. If the odds ratio associated with
lifetime radon exposure, dichotomized at 4 pCi/L. is 1.5, and if 10% of controls have that
level of exposure, then under random sampling about 1,000 cases and 1,000 controls are
required to achieve 80% power to detect the radon effect at a .05 significance level (see
Woolson, Bean, and Rojas, 1986). By contrast, if the study can be designed so that equal
numbers of cases and controls are smokers, then 725 of each would be required to achieve
the same power. The extent of the gain here in efficiency is attributable to the very large
odds ratic associated with smoking; matching on a weaker risk factor would bring a less
impressive efficiency advantage.

Estimating lifetime radon exposure by making measurements on all current and former
residences for each person studied is a time-consuming and expensive process, while
determining smoking information is relatively easy. There are clear advantages 10 4 design
that effectively matches cases and controls on smoking status.

2.1 Stochastic Frequency Matching

The mvestigator can achieve approximate frequency matching by selecting all cases iden-
tified, and selecting controls according to a biased sampling scheme. Each potential control
is first randomly identified and screened. A sccond random selection will govern whether
a person is actually recruited, i.e., invited to participate in the full study. Suppose that the
population distribution for a K-level screening factor is estimated to be (C1s C2y C3y oLy Cr)
for cases and (h, ha, hs, ..., hx) for nondiseased persons. Let ri; denote the recruitment
probability for an individual screened with disease status / (i = 1 for cases and i = 0 for
controls) and level j of the screening variable. Set r,; = 1 for all j and set

g/l

fo; = max{c;,/h;)

Sampling of controls is to be done according to a Bernoulli sampling mechanism, where
for each potential control screened a random uniform (0, 1) number is generated. If the
result is less than the above number, the person is invited to participate in the full study.
Then, conditional on the total number of controls recruited, the sampling distribution of
the controls becomes a multinomial with probabilities (¢, , ¢,, €1, ..., Cx ), the same as that
of cases. (In practice this equality of case and control distribution will only be approximate,
since the case distribution must be estimated.) This sampling scheme minimizes the number
of controls that must be screened, since the most oversampled control category is sampled
with probability 1. This scheme wili be called “stochastic frequency matching.”

As an example of its application assume that the distributions of smoking habits among
cases and controls are known to be approximately as in Table 1. To achieve approximate
balance without discarding any recruitable cases, one would recruit available cases with
probability 1 and nonsmoking controls with probability (.15/.7/(42/.1) = .051. Non-
diseased light smokers would be recruited with probability .357, moderate smokers with
probability .6667, and heavy smokers with probability 1.0. The result would not be perfect
frequency matching balance, but balance in expectation. Since only about 24% of controls
(the weighted average of the recruitment probabilities) would be recruited, approximately
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Table 1
Hypothetical distribution of smoking status among
lung cancer cases and controls

_ Nonsmokers  Light = Moderate  Heavy
Cases 15 135 28 42
Controls 70 10 A0 10

4 times as many controls as cases would need 1o be screened in order to recruit equal
numbers (in expectation) of cases and controls.

Suppose the investigator’s initial estimates for the distributions of the matching factors
were wrong and therefore the “wrong” recruitment probabilities were used. Both analyses
1o be described below will still be valid, since it will nowhere be assumed that the sampling
probabilities were derived from true distributions.

Now suppose the investigator has no prior knowledge of the distributions of the screening
factors, but does have access either to disease rates or to relative risk estimates for the
discase under study. based on the screening variables only. For example, we might have a
good risk model for lung cancer as related to age. sex, and smoking data, but not have good
information on population smoking patterns for, say, Utah. Recruitment probabilities
yielding stochastic frequency matching can still be set up. Suppose the odds ratio for lung
cancer associated with stratum j is estimated to be OR;. Let ry; be 1, as before, for all levels
of the screening variables, and let 7o, be OR;/(max OR;) for all j. This will again achieve
approximate balance between cases and controls in their distributions of screening factors.
To see why this works observe that if =; is the prevalence of category j among nondiseased
people, then the probability that a control sampled is in category j (w;OR;/(max OR))
divided by the corresponding probability for category 1 (m,/(max OR,)), matches that of
cases.

2.2 General Target Distributions

An investigator may wish to select recruitment fractions to achieve a specified target
distribution, (7,, f, s, . . . » Ix ), where the population distribution is again {¢1, €2, C3, - - - >
cx) for diseased and (hy, i, Ma, . -, hy ) for nondiseased individuals. For example, results
in Breslow and Cain (1988, Table 3a) suggest that for assessment of interaction, when the
exposure is rare (the exposure being known here at the screening stage), it is highly
advantageous to equate the numbers of exposed and unexposed individuals in each disease
category. To achieve any specified target distribution, while minimizing the number who
must be screened, set the ry; for each case identified to be

maX([j/C,')

and an analogous expression for controls.

If the sampling is done according to an independent Bernoulli mechanism for each
potential subject identified, then the distribution for recruited cases and for recruited
controls will still be multinomial, but now with parameters (i1, L, 13, . . .. Ix), @8 if (in the
distorted universe in which we are sampiing) this is the true common distribution. A
standard classical logistic regression analysis based on the recruited individuals from the
population represented in Table 1 can then be carried out but will wrongly estimate an
odds ratio of 1 for each smoking category, compared to nonsmokers.

There may also be situations where different target distributions are desired for cases and
controls. For example, because of time and cost considerations one might be willing to
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tolerate an excess of smokers among the cases. Distinct target distributions can be achieved
by a straightforward generalization of the method described above.

Note that the Bernoulli subsampling is not just a matter of convenience. One might
think, for example, that sampling every third control in a particular category would be
equivalent (at least asymptotically) to applying Bernoulli subsampling with probability 1,
To see why this is not so, recall that if Y is binomially distributed then Y is not, unless «
is 0 or 1. Whether an individual is included or not must be independent of which other
individuals are included. Only Bernoulli sampling in the proposed design allows us to
distort (within each disease category) the probability distributions for the screening variables,
while preserving independence among subjects.

2.3 Sample Enrichment

In some situations one might wish to oversample among certain categories that would
come up only rarely with random sampling. For example, in a study of radon and lung
cancer one might wish to oversample nonsmoking cases to enhance our ability to charac-
terize the radon/smoking interaction by providing closer to equal numbers of smokers and
ronsrokers. This oversampling can be done without any prior knowledge of the distribu-
tion of the factor. For example, a rare exposure suspected of being a risk factor (but
available as a screening variable) may be oversampled among cases, and even more strongly
oversampled among controls. For example, one could sample exposed persons with
probability 1, unexposed cases with probability .5, and unexposed controls with probability
2. It is easily shown that this strategy would be particularly advantageous (leading to
balance) under a scenario where the true relative risk is 2.5.

3. Maximum Partial Likelihood Logistic Analysis

We next describe methodology for analyzing data arising from a design that uses biased
sampling, and demonstrate that all effects, including those associated with screening factors
allowed to bias the recruitment, can be estimated consistently.

3.1 Notation and Model Specification

Suppose D = 1 or 0 according as the disease is present or not, and R = 1 or 0 according as
the person is recruited into the study or not. In order to be recruited for full participation
in the study, the potential subject must first be identified. It is conceptually useful to
partition sampling intc two events. First there is an identification event, denoted by I = 1,
that does depend on disease status but does nor depend on other variables. In practice the
investigator typically has one sampling system (e.g., a cancer registry) that samples randomly
within available cases and another system (e.g., random digit dialing) that samples randomly
within potential controls from the same population. The second step is where the subject
is invited to participate in the full study. In this second step the investigator may allow the
probability of final recruitment to depend jointly on both disease status and on any
screening variables. Suppose disease risk in the population can be characterized by a vector,
X, of variables, including the exposure of interest and interactions, with a | entered as the
first component, to allow estimation of the mean parameter. Assume that the logistic model
is appropriate for disease risk in the population, so that

PrD = 11X]\ _ .
m(Pr[D Y X]> = X8

for some column vector, 8, of regression coefficients.
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Note the following factorization:
PrfR =1,1/=1,D=i|X]=Pr{D= IXPr[R=1,1=1|D=1i XL
It follows from this that whatever sampling strategy has been followed, the biased study
logit can be separated into two terms, as follows:
(FrD = IJR=1,T=1X]
P{D=0|R=1,1=1,X]
3 n<Pr[R= 1.1=1D=1|X]
PriR=1,I=1D=0]X]

i

B ln(Pr[D = 1|XIPr{R = 1,1=1|D =1, x1>
PriD =0 |X|Pr{R=1,1=1|D=0 %]
PriD = [ = = = .
. m(--«r[ 1‘|ﬂ§_]> . ln(Pr[R 1 1=11D=1X]} )
PrfR=1,1=1]|D=0X]

PriD = 0| X]
where the first term is the logit based on the true population and the second is the error
related to sampling bias.

3.2 Unconditional Logistic Regression

Since we assume the initial identification step depends on disease status but not on
covariates, we can factor as follows:

Pr[R=1,1=1|D=1,X}:Pr[]:llD=[,X}Pr[R=lllz‘l.,D=[,,X]
=Pr[1=1|D=i]Pr{R=l|1:1ﬂD=i,X].

Tt follows from this that the second term in (1) can be rewritten as folows:

i PR =1,1= 11D =1 X]
P{R = 1.I=1]|D =0, X]
={nPrl{ = 1| D= 1)~ InPeff = 1| D = o
4+ {n(PrfR = 1|I=1,D= 11X}~ In(Pr{R = 1|1 =1,D=0,XDi.
Note that the first difference term is constant, and the second difference term, the part
involving recruitment, is within the control of the investigator, and is to be fixed as part of

the design. Now if we make the very mildly restrictive assumption that this can be specified
additively, then we can write, for some known column vector, ¥ :

Xy =in(PrfR=1{I=1,D= LX) - In(PrfR = 1]7=1,D=0 X}

If we let 8% denote the limit of the logistic regression maxirnum likelihood estimator,
conditional on recruitment, notice that

logitPrfD = LR =1, X}) = Xg* = Xf + Xv,

and it follows that if 4* is the maximum likelihood estimator based on a “prospective”
analysis (as developed by Prentice and Pyke, 1979), then 8% — v is the maximum likelihood
estimator for 8. Furthermore, since the correction, X, is a constant “offset” in the model,
the variance-covariance is correctly estimated with no correction required. Maximum
likelihood estimation is straightforward in GLIM (Baker and Nelder, 1978), where one
simply specifies Xy as an “offset.”
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More generally, the bias need not be expressible as a linear function of the covariates,
We can compute maximum likelihood estimates using GLIM by declaring for each
individual the known error, In(Pr[R = 1|7 =1, D =1, X] — In(PrfR = 1|/ = I,
D = 0, X]) as an offset. In fact, the screening process (hence the offset) may even depend
on variables not included in the final model. Since this maximum likelihood computation
uses the offsets but ignores the screening information for subjects not recruited for full
participation in the study. it will be referred to in what follows as maximum partial
likelihood estimation, or MPLE. The Appendix develops an analogous result for conditional
logistic regression.

As an example, considering the population of Table 1, let s,, 5», 53, and s, denote
indicator variables for the four levels of smoking status. Then the offset for the maximum
partial likelihood approach would be ys,In(ry ;/ro; ). Thus for stochastic frequency matching
the offsets corresponding to the four smoking categories would be —In(.051) for nonsmokers,
—In(.357) for light smokers, ~In(.66667) for moderate smokers, and 0.0 for heavy smokers.

3.3 More General Risk Models

As suggested in the Introduction, the proposed design allows for fitting nonmulti-
plicative models for describing interaction. Suppose the risk Pr{D = 1 | X] is specified
by some function f(X). Then one can show that logit(Pr{D = 1|R =1,/ = 1, X]) =
K+ 8(X) + logit[ f/(X)], where S(X) is the same log ratio of sampling probabilities used as
an offset above and X is the log ratio of probabilitics of identification for cases and controls.
Thus nonmultiplicative models can also be fit by maximum likelihood following this
design, aithough in general this will require additional software development.

4. Generalization of the Method of Breslow and Cain

An alternative approach is suggested by the “two-stage” design proposed by White (1982):
see also Walker (1982). Briefly, White considered the situation where exposure information
is already available for a large sample of cases and controls at stage 1 (screening). Complete
covariable ascertainment is then carried out only on a subsample, where sampling fractions
can depend jointly on disease status and covariates. White showed how to compute a valid
estimate of the adjusted exposure odds ratio, by incorporating information from the initial,
complete sample. Recently, Breslow and Cain (1988) extended this approach by allowing
for a multilevel exposure variable, and any number and type of covariables.

The technique described by Breslow and Cain can also be applied following ongoing
randomized recruitment, if we simply condition on the actual numbers screened and

. recruited in the various disease/variable subgroups. Conceptually, the “first-stage™ sample

becomes all those who were screened and judged eligible for randomization (for whom
discase status and screening information were available), and the “second-stage” sample is
all those who were then, based on that partial information and a Bernoulli sampling
mechanism, randomized to recruitment and complete variable ascertainment.

Returning to the example of Table 1, let s;, 5., 53, and s, again denote indicator variables
for the four levels of smoking status. Suppose that following individual randomization a
total of n;; out of N;; were randomized to recruitment. Then the offset for the maximum

. partial likelihood approach of Section 3 would be s, In(r, i/Ta; ), while that correspending

to the maximum conditional pseudo-likelihood (as developed by Breslow and Cain) would
be 5s;In(ny;No;/(no;N1;)). The variance estimate for the maximum partial likelihood
approach is then the naive variance, obtainable for example from GLIM. The variance
estimator for the maximum pseudo-likelihood approach is given by Breslow and Cain.
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It is worth noting that if the investigator has used one form of a variable in setting up
the vecruitment probabilities and then wishes to use a More detailed form of the variable
in the analysis, this can be done quite easily (Cain and Breslow. 1988). For example, in the
radon study discussed above, one might wish to model the dose response for smoking using
more detailed second-stage information, €.g., number of cigarettes smoked per day. rather
than on the crude categorization given in Table 1. To do this, either with the method of
Breslow and Cain or with the maximum partial liketithood estimation of Section 3, declare
the appropriate offsets based on the probabilities actually used in recruitment, but omit the
screening form of the variable from the model.

5. Comparison of Maximum Partial Likelihood with the Method of Rreslow and Cain

Just how efficient is stochastic frequency matching under these methods of analysis?
Consider the simple situation where there are two dichotomous factors and recruitment is
biased so that cases and controls are, in expectation, matched along factor 1. Suppose, as
in Breslow and Cain, that factor 1 occurs with prevalence .05 and factor 2 with prevalence
30 in the nondiseased population. Here factor 1 is considered to be a screening variable.
The asymptotic relative cfficiencies depend on the odds ratio relating the two factors in the
population, to be denoted 6. Table 2 lists asymptotic relative efficiencies for the estimated
log odds ratios, 8, and 52, for the two factors using the method of Breslow and Cain, and
also for the maximum partial likelihood method (MPLE). For both methods of analysis
stochastic frequency matching is compared to a design where equal numbers of cases and
controls are studied but the sampling is purely random within disease category. The
sampling for both designs retains all cases and a proportion of controls, so that the *first-
stage” sample sizes are the same. The difference is that under random sampling the second-
stage recruitment is done without regard to factor 1 status.

Note from Table 2 that the effect of the matching factor not only can be estimated under
stochastic frequency matching, but can often be estimated with better precision than under
random sampling. This precision advantage is most apparent under the MPLE method
(comparing columns 4 and 5). This is only because the method of Breslow and Cain makes
better use of the first-stage data under the random sampling design. Column 6 lists the
relative efficiencies of MPLE and the Breslow/Cain method when both are applied following
stochastic frequency matching, and shows that the Breslow/Cain method is consistently
slightly more efficient for estimating 3,.

The precision of estimation for f8, is also enhanced (here both methods give the same
variance), as we would expect. The rightmost column shows the asymptotic relative
efficiency associated with the interaction parameter, 83, under a model where the true
interaction is 0. The advantage to this design appears to be strongest for the estimation of
interaction. Results given by Breslow and Cain (1988, Table 3a) suggest that even greater
gains in efficiency for assessing interaction are possible by using as the target distribution
(as in Section 2.2) half with and half without the exposure (or screening factor), rather than
stochastic frequency matching.

The variances associated with the maximum partial likelihood procedure are identical to
those following the method of Breslow and Cain. except for estimation of the effects
involving only screening variables {hence only one column is shown for asymptotic relative
efficiencies for 8 and f3). Thus if our primary objective is to estimate effects associated
with a second-stage variable, there is no efficiency advantage to the method of Breslow and
Cain. Notice from Table 2 that the maximum partial likelihood approach to estimating the
odds ratio associated with the screening variable typically did only slightly worse than the
method of Breslow and Cain.

Maximum partial likelihood is always less efficient than the method of Breslow and Cain
for estimating effects of first-stage variables (here 3,), since (see their Proposition 3) the
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Table 2
Asymptotic relative efficiency for stochastic frequency matching
relative to random case-control sampling

8
exp(#) exp(32) f BC MPLE BC/MPLE 82 83
2.0 2 2 1.01 1.57 .97 .99 1.24
2.0 2 .5 1.03 1.50 97 1.00 1.23
2.0 2 1.0 1.04 1.41 .98 1.01 1.21
2.0 2 2.0 1.04 1.29 99 1.01 1.18
20 2 5.0 1.02 1.10 1.00 1.01 1.08
2.0 1.0 2 1.00 1.40 .98 .99 1.43
2.0 1.0 5 1.00 1.40 98 1.00 1.42
2.0 1.0 1.0 1.00 1.41 98 1.01 1.41
2.0 1.0 2.0 1.00 1.40 98 1.01 1.40
2.0 1.0 5.0 1.00 1.38 98 1.01 1.40
2.0 5.0 2 1.00 1.08 1.00 1.00 112
2.0 5.0 .5 1.02 1.22 99 1.00 1.30
2.0 5.0 1.0 1.04 1.39 98 1.01 1.41
2.0 5.0 2.0 1.05 1.57 97 1.00 1.48
2.0 5.0 5.0 1.04 1.75 .95 98 1.50
10.0 2 2 1.00 2.85 .83 99 2.09
10.0 2 .5 1.05 2.87 .84 1.08 2.01
16.0 2 1.0 1.13 2.84 .86 1.18 1.97
10.0 2 2.0 1.23 2.72 .88 1.27 1.97
10.0 2 5.0 1.28 2.35 .92 1.29 2.07
10.0 1.0 2 1.00 2.75 86 1.15 3.46
10.0 1.0 5 1.00 2.84 .85 1.07 311
10.0 1.0 1.0 1.00 2.88 .84 1.16 2.88
10.0 1.0 2.0 1.01 2.84 - 85 1.21 2.75
10.0 1.0 5.0 1.03 2.65 .87 1.19 2.80
10.0 5.0 2 1.06 2.19 92 1.01 3.35
10.0 5.0 .5 1.10 2.49 .89 1.10 3.17
10.0 5.0 1.0 I.11 2.70 .87 1.16 2.90
10.0 5.0 2.0 1.05 2.73 .84 1.15 2.63
10.0 5.0 3.0 93 2.53 .83 1.04 2.45

BC denotes the ratios ( for the two designs) of asymptotic variances computed using the method of Breslow and
Cain (1988), and MPLE denotes the ratios based on maximum partial likelihood estimation. The column labelled
BC/MPLE shows the variance under BC divided by that under MPLE, following stochastic frequency matching.
As in Breslow and Cain, the disease is assumed rare, the prevalence of factor 1 is .03, and that of factor 2 is .30.

Efficiencies for ¢, and 8, are based on the model without including an interaction term in the model, while
that for 85, the interaction, is under the assumption 8; = 0.

variance estimate used in the latter method involves subtracting a positive term from the
naive variance based on logistic regression. Thus the asymptotic relative efficiency of
the maximum partial likelihood estimation must be less than 1. However, the point
estimates are also different, since the method of Breslow and Cain subtracts an offset based
on the actual proportions sampled in various strata, rather than based on the known
sampling probabilities. It was thus not clear how the two approaches to analysis would
compare for moderate samples.

Accordingly, the operating characteristics of the two approaches were assessed in a small
simulation study. Various prevalences are assumed for two dichotomous factors, denoted
x, and m,. The two factors again covary with odds ratio . Simulations of 1,000 case-
control studies were carried out for each of several combinations of parameters and sample
sizes, where stochastic frequency matching was followed. In expectation, the total number
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of controls equals the total number of cases, but because recruitment is random the actual
number of controls recruited varies. Ny will denote the total number of cases to be studied,
and N, the (larger) number of controls whose status with regard to factor { is to be
determined and who are eligible for recruitment. The expected number of recruited (i.e.,
second-stage) controls is also Ni. When the denominator associated with a particular
combination of the factors was 0 a value of .5 was substituted for purposes of analysis.

Table 3 shows the coverage properties of confidence intervals under the two methods.
(BC denotes Breslow/Cain and MPLE the unconditional maximum partial likelihood
procedure described in Section 3.) For both procedures the empirical bias (not shown) was
generally less than 1%. Both methods had coverage consistent with the nominal 95%. As
expected, the Breslow/Cain method offers higher power than the unconditional MPLE, but
the difference appears generally to be small, especially when the “exposure,” the occurrence
of factor 1, is rare {x, = .05 in Table 3). These moderate sample results are consistent with
the asymptotic relative efficiencies described in Table 2. Results for estimating 3, are not
shown, since the estimates are not different for effects of second-stage variables.

Fable 3
Simulation results, based on 1,000 simulated case~control studies
for each combination of parameters

Number failing

to cover
8, {95% CI) Empirical power
Cepy 0 om N N BC  MPLE  BC  MPLE
2.0 1.0 3 100 153 52 54 73 .68
2.0 1.0 3 150 230 42 40 .90 .84
2.0 1.0 3 200 307 54 58 96 90
2.0 2.0 3 100 160 59 59 70 .64
2.0 2.0 3 150 240 53 57 .88 .83
2.0 2.0 3 200 321 55 52 94 91
3.0 1.0 3 100 187 51 48 98 .96
3.0 1.0 3 150 281 49 51 1.00 1.00
3.0 1.0 3 200 374 44 50 1.00 1.00
3.0 2.0 3 100 194 45 48 98 95
3.0 2.0 3 150 291 44 52 1.00 99
3.0 2.0 3 200 388 51 45 1.00 1.00
3.0 1.0 05 100 272 57 60 4 72
3.0 1.0 .05 150 409 48 49 .90 .88
3.0 1.0 .05 200 545 50 49 .97 .96
3.0 2.0 05 100 294 45 48 a7 NE
3.0 2.0 .03 150 442 47 44 91 .89
3.0 2.0 .05 200 589 43 45 96 95

The odds ratio associated with the second factor is assumed to be 2.0. 4 denotes the odds ratio for the two
factors in the nondiseased population, and w; denotes the prevalence of factor in the nondiseased population.

is fixed at .15. The N, denote the number of controls to be identified in order to achieve equality on average

between numbers of cases and controls.

6. Discussion

The proposed design is appropriate for the commonly encountered situation in case-control
studies where certain variables already known 1o be related to disease risk, such as age and
smoking status, are easily obtained. If offers the gains in efficiency associated with matching,
but also allows for efficient estimation of effects associated with “matching” factors, and a

Material may be protected by copyright law (Title 17, U.S. Code)

N o N B - o)



ent 1s random the actual
er of cases to be studied,
ird to factor 1 is to be
umber of recruited (i.e.,
~tated with a particular
purposes of analysis.
under the two methods.
mum partial likelihood
cal bias (not shown) was
th the nominal 95%. As
nconditional MPLE, but
xposure,” the occurrence
esults are consistent with
for estimating 8, are not
tage variables,

rol studies

Empirical power

BC  MPLE
73 68
90 84
96 90
70 64
88 83
94 91
98 96

100 100

00 100
98 95

1.00 99

10O 1.00
74 72
90 88
97 96
77 73
91 89
96 95

otes the odds ratio for the two
the nondiseased population. 7,

to achieve equality on average

1 situation in case-conirol
ease risk, such as age and
associated with matching,
‘matching” factors, and a

Case-Control Studies with Biased Sampling 973

flexible analysis that permits the fitting of nonmultiplicative models. There are practical
advantages as well, In classical frequency matching, the investigator cannot know how
many centrols will ultimately be needed to serve as matches in a particular category until
case ascertainment is complete. By contrast, the propesed method allows for simultareous
and independent recruitment of cases and controls, and completely avoids the complica-
tions associated with filling quotas.

The method does require prior information on screening-variable-specific disease rates
or odds ratios. However, if the probabilitv matrix for recruitment was based on erroneous
estimates but the actual probabilities used are entered in the offsets, the analysis will still
be valid, the only consequence being potentially some loss of efficiency.

While both the computation of asymptotic relative efficiencies and the simulations were
done under the assumption that stochastic frequency matching is to be applied, the method
described allows for greater flexibility in design, so that distributions of factors can be
selected by the investigator to approximately optimize for any selected estimates and
comparisons. For example, in the radon study discussed above, one might wish to oversam-
ple nonsmoking cases to facilitate characterization of the interaction between smoking and
radon. Results in Breslow and Cain suggest great gains in efficiency for estimation of such
an interaction can be achieved by approximately equating the numbers of smokers and
nonsmokers within each disease group.

If, as in the proposed design, the recruitment decision is made on a subject-by-subject
basis, independently (though not identically) among subjects, then there are two choices
for analysis. One can use maximurm partial likelihood analysis, as described in Section 3,
being careful to include the mode! offset necessary to remove bias in the point estimates.
This analysis offers the advantage of maximization of the likelihood by means of logistic
regression in packaged programs like GLIM, with simple variance estimates and valid
likelihood ratio testing. The likelihood is based, however, on partial information, since the
original recruitable sample identified is not fully exploited and thus some information
related to the screening variables is lost. If we instead apply the method proposed by
Breslow and Cain, all of the available data are used, but the variance estimation is more
complex and the method does not provide for likelihood ratio testing.

It is important to note that the maximum partial likelihood analysis is appropriate only
when the subsampled individuals are selected by a Bernoulli sampling mechanism. If the
investigator has simply selected subsamples of a convenient size, then the method of
Breslow and Cain should be used. Thus, for example, in the stratified sampling example
described by Fears and Brown (1986; sce also Breslow and Zhao (1988)), the methods of
Section 3 should not be applied. Similarly, if traditional frequency or guota matching has
been followed, then one can still estimate effects of the matching factors, but only by
applving the method of Breslow and Cain.

Following a design employing biased, individually randomized recruitment, the choice
of analysis will depend ultimately on which factor is of primary interest in the study. If, as
in Breslow and Cain, the exposures of interest are among the easily ascertained first-stage
data, and the data obtained after randomization to recruitment are needed only to adjust
the estimated effect of interest, then one would prefer the slightly more efficient method of
Breslow and Cain. If the variable of primary interest is obtained at the second stage, then
the maximum partial likelthood method might be preferred, because it offers the same
efficiency for the parameter of primary interest but provides for flexible exploratory analyses
by means of likelihood ratio testing.
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RESUME

Un plan d’étude cas-témoin est proposé dans lequel la sélection des sujets pour lesquels on recueille
toutes les variables est basée a la fois sur le statut cas/témoin et sur des variables de sélection faciles
A obtenir gui peuvent étre liées a la maladie. Le recrutement des sujets se poursuit au fur et 4 mesure
que les cas sont diagnostiques et sc fait selon un échantillonnage de Bernoulli indépendant, avec des
probabilites de recrutement fixées au préalable par linvestigateur. En particulier, le processus
J’échantillonnage peut étre congu pour 3sSUrer €n mMoyenne un appariement sur les distributions
marginales a condition, comme ’est souvent le cas, d’avoir des estimations & priori des taux de la
maladie ou des odds-ratios associés aux variables de sélection telles que P'age et le sexe. Par ailleurs,
lorsqu’on étudie une exposition rare, un recrutement biaisé peut permettre d’enrichir Péchantillon
avec certains groupes de sujets. Avec un tel plan d’étude il y a deux analyses possible basées sur la
régression logistique, qui permettent toutes les deux d'estimer les effets associés aux variables de
sélection utilisées pour biaiser le recrutement.
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APPENDIX

Consider what happens when conditional logistic regression is to be carried out. Biased recruitment
implies that the distribution Pr(X|D = i) has been distorted in a systematic way. We can write

PrX|R =1, D =i] = PX|D = {[(PrR = 1| D = i, X|/PrR = 1| D = i]). (A.1)

Under the usual assumptions sampling depends on disease status but not on other variables, so that
the ratio factor to the right becomes 1. However, following biased recruitment it must be included in
the likelihood.
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Following the development described heuristically in Breslow and Day (1980, pp. 204-205), and
worked out rigorously by Breslow et al. (1978), if a stratum contains #, cases and n, controls, where
n = m + Ho, then if we condition on the »n variable vectors observed, X, ..., X,, the conditional
probability that the first n, vectors belonged to the cases can be written

[1700 PA(X,| R = 1, D = 1] [1lenss PAX,|R = 1, D = 0]
Ses THits PrXeo) | R = 1, D= 1] Jlmnes PrXop [ R =1, D=0}

where S 1s the set of all permutations on the set {1, 2, ..., ni. Now applyiﬁg (A.1), and using the fact
that Pr{X | D = i] = Pr[D = i/ | X]Pr[X]}/Pr]D = i], we can rewrite this as

Do PriD=1|X,]PriR=1|D=1,X;][1}-n . PI[D=0]X,IPr[R=1 | D=0,X;]
Yees i PrD =1 X, pIPr{R=1|D= 1 X, ,] [I}-« P D=0 X, JPrIR=1 | D=0, X, )]
We can apply the factorization of recruitment probability developed above to rewrite this as
W PHD= 1 X IPHR=1 L D=1, X] [ e, P{D=0| X, |Pr[R=1]|], D=0,X,]
Y ces H_}’lz, PriD=1|X,»Pr{R=1|1D=1, X ] 111w PHD=0 | X, H]Pr{R=1|1D=0.X,»]
Dividing the numerator and denominator by the product across all subjects of

PriR=1|1,D=0,%]

we obtain the following simplification:

P
M5 PD = 1X] 5

—

[R=1|1.D=1X]
[R=1|1,D=0.X%X,]
PrR=11 D=1, %]
PrfR= 114 D=0 X,,]

Hina iD= 0]X)]

—

Zees 17 Pr{D = 1] X,)] IFen, 1 PX[D = O.ﬂ Xl

which is simply

o exp(X (8 +v)
Yres [Tt exp(Xo (8 + )
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